
Programmable HSA Accelerators for Zynq
UltraScale+ MPSoC Systems

Wolfgang Bauer1�, Philipp Holzinger1, Marc Reichenbach1, Steffen Vaas1,
Paul Hartke2, and Dietmar Fey1

1 Department of Computer Science, Chair of Computer Architecture
Martensstraße 3, 91058 Erlangen

Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Germany
{WolfgangM.Bauer, Philipp.Holzinger, Marc.Reichenbach, Steffen.Vaas,

Dietmar.Fey}@fau.de
2 Xilinx, Inc.

2100 Logic Drive San Jose, CA 95124-3400, USA
phartke@xilinx.com

Abstract. Modern algorithms for virtual reality, machine learning or
big data find its way into more and more application fields and result in
stricter power per watt requirements. This challenges traditional homoge-
neous computing concepts and drives the development of new, heteroge-
neous architectures. One idea to attain a balance of high data throughput
and flexibility are GPU-like soft-core processors combined with general
purpose CPUs as hosts. However, the approaches proposed in recent
years are still not sufficient regarding their integration in a shared hard-
ware environment and unified software stack. The approach of the HSA
Foundation provides a complete communication definition for heteroge-
neous systems but lacks FPGA accelerator support. Our work presents
a methodology making soft-core processors HSA compliant within MP-
SoC systems. This enables high level software programming and there-
fore eases the accessibility of soft-core FPGA accelerators. Furthermore,
the integration effort is kept low by fully utilizing the HSA Foundation
standards and toolchains.

Keywords: Heterogeneous System Architecture · FPGA · Programmable
Accelerator · HSA Foundation · Zynq Ultrascale+ · Nyuzi Processor

1 Introduction

Modern computing applications keep growing requirements in terms of execu-
tion time and power consumption. This development can be observed for high-
performance computing, desktop environments, as well as in embedded systems.
However, the upcoming end of Moore’s law limits the prospects of traditional
CPU centered computing. In the future these requirements can only be satisfied
by increasingly heterogeneous systems. Such environments exploit the benefits of
CPUs, GPUs, DSPs and FPGAs by executing each task on the best suited. This



2 W. Bauer et al.

way heterogeneous systems can be designed combining different architectures in
order to attain the highest energy efficiency. For embedded systems this concept
can be further extended by integrating all cores on a single die.

Contrary to all benefits of heterogeneous architectures, software development
is getting more and more complex with the rising amount of different parts.
Therefore, various programming models and language extensions, like CUDA,
OpenCL or OpenMP, have been introduced to reduce the programming complex-
ity by abstracting architecture specific properties. Some of them also hide data
communication between different hardware units. However, most of the existing
standards are either proprietary or lack exact definitions regarding communica-
tion from a hardware point of view. To close this gap the Heterogeneous System
Architecture Foundation (HSA Foundation3) specified a low-level programming
model and system software infrastructure to support heterogeneous computing
architectures [10]. This facilitates the extension of new HSA compliant acceler-
ation devices to existing systems without any changes to the application source
code.

HSA Foundation standards are already established in the desktop computers
from AMD and their graphics cards [3, 12]. Recent embedded devices, such as
smartphones, also incorporate HSA compliant chips [14]. Unfortunately, FPGAs
which are a good choice for heterogeneous systems due to their high peak per-
formance and low power consumption, are currently not fully supported. Due
to their highly flexible nature, finding a mapping is significantly more complex
and needs to be further investigated. This means up to now, new, emerging
SoC architectures e.g. from Xilinx or Altera, which contain processor cores and
an FPGA part, could not benefit from HSA Foundation standards. This limits
the flexibility of these powerful embedded devices. Therefore, in this paper we
show a new methodology to make SoCs, containing a CPU and FPGA part,
HSA compliant. Due to the interface’s open definition between software runtime
and hardware the HSA environment is ideally suitable handling the FPGA’s
communication to other components in heterogeneous systems.

To demonstrate our concept, we chose a Xilinx SoC containing an ARM
application processor deployed as controlling host unit and a FPGA part as
hardware accelerator. Traditionally, such FPGA based hardware accelerators are
described with custom HDL code, which makes the accessibility of FPGA accel-
erators rather low. Therefore, to preserve the flexibility and to avoid language
restrictions, we use in this paper highly configurable and customizable soft-core
accelerators, to unite flexibility and pragmatism of FPGAs. Those cores enable
the execution of multiple application tasks without the need of resynthesis and
reloading, but can also be adapted for the application, e.g. by adding custom
instruction units.

This paper is structured as follows: First, competing concepts and similar
approaches are evaluated in Section 2. Afterwards in Section 3 the used hardware
platform, the necessary fundamentals of the HSA Foundation standards and the
architecture of the selected GPU like soft-core are explained. Then Section 4

3 http://www.hsafoundation.com



Programmable HSA Accelerators for Zynq UltraScale+ MPSoC Systems 3

describes the derived hardware setup and software toolchain. The detailed results
are presented in Section 5. Lastly Section 6 summarizes the paper and briefly
covers possibilities for future work.

2 Related Work

The most promising alternative to programmable soft-core GPUs for using an
FPGA from a common language is high-level synthesis (HLS). However, instead
of compiling to an accelerator’s instruction set architecture (ISA), the function-
ality of the kernel itself is mapped to an application-specific hardware circuit.
While in its simplest form only the kernel itself is translated to HDL [17], there
exist more sophisticated solutions generating the hardware connection as well as
software interfacing automatically. The most prominent ones are the commercial
Xilinx SDAccel [16] and the Intel FPGA SDK for OpenCL [2]. Both are based
on the vendor neutral and well known OpenCL standard to ease the usage for
developers. An academic approach to HLS was for example done by LegUp [8].
It provides FPGA accessibility via pthreads or OpenMP [9], but also tries to get
a step further by automatically determining and offloading frequently used code
sections. While this process usually leads to better results than code execution
on a soft-core processor, it has major drawbacks. Since each kernel can only
execute a specific program, the time-consuming synthesis and FPGA reconfigu-
ration has to be done anew for each kernel in the application. Therefore, a more
flexible approach based on soft-core accelerators is advantageous.

Further approaches rely on application-specific instruction set processors
(ASIP). The ISA of those cores is optimized for a certain application-field. For
example in [15] an ASIP for power quality monitoring was developed. In compar-
ison to hard-wired solutions ASIPs require a slight resource overhead and provide
slightly less performance, but offer programming flexibility without resynthesis
as big benefit. This strategy works well for processing intense tasks, but in times
of Internet-of-Things even more flexibility is necessary to realize communication
protocols like for example OPC UA or TCP/IP. Thus, a combined system-on-
a-chip architecture consisting of multiple general-purpose embedded CPU- and
accelerator cores (MPSoC) is required, to obtain a low-power solution at suf-
ficient performance and flexibility. Nevertheless, the performance enhancement
of ASIPs can only be exploited when using their rather complex instructions,
like FFT- or mean value calculations. Current compilers are incapable to map
standard source code to those specific instructions, so developers have to use
architecture-specific functions to benefit from such architectures. That practice
cumbers the flexible source-code portability from and to other architectures.

While many open source processors like LEON34, OpenRISC5, Amber ARM-
compatible core6 and various RISC-V7 implementations are available for scalar

4 http://www.gaisler.com
5 https://openrisc.io
6 https://opencores.org/project/amber
7 https://riscv.org



4 W. Bauer et al.

data processing, the variety for soft-core GPU architectures is more reduced. Al-
Dujaili et al. extended the mentioned LEON3 processor by adding parallelization
and synchronization features to support the CUDA execution model with their
Guppy GPU-like soft-core processor [1]. An other approach is pursued by the
FlexGrip project [4] and the MIAOW project [5]. The developed architectures are
based on proprietary Nvidia or AMD GPUs and modeled according to available
information. Due to ISA compatibility the existing vendor toolchains can be
used for code generation.

Al Kadi et al. proposed the FGPU [11] with a MIPS-based ISA, which is
extended by further vector-processing instructions to execute OpenCL kernels.
It provides hardware support for scheduling work items to multiple computing
units conveniently to the SIMT programming model and includes an LLVM-
backend. In contrast to this the Nyami [6], or later Nyuzi [7], presented by
Jeff Bush et al. uses a more general purpose architecture utilizing wide vector
registers with predicated execution vicarious to the Intel Xeon Phi architecture.
It also uses its own ISA similar to MIPS-ISA and, besides integer arithmetic,
floating point operations are supported as well. Due to the LLVM-backend many
languages providing LLVM-frontends can be translated to the processor’s ISA.

The selection of available source languages is currently quite limited for all
these approaches and there is little freedom of choice. A common low-level stan-
dard like the HSA specifications can reduce the time to develop language front-
ends and diversify the existing solutions.

3 Fundamentals

3.1 MPSoC Platform

The Xilinx Zynq UltraScale+ MPSoC integrates a quad-core ARM Cortex-
A53 MPCore based processing system (PS) and Xilinx programmable logic
(PL) in a single device [18]. The 16nm FinFET+ PL communicates with the
PS through 6,000 interconnects that are organized into twelve 128-bit high-
performance ARM AMBA AXI4 ports each providing different capabilities. The
high-performance AXI4 ports provide access from the PL to DDR and high-
speed interconnect in the PS. The PL can be tightly or loosely coupled to the
A53 APUs via two-way coherent, I/O (one-way) coherent, or non-coherent trans-
actions. Address translation is provided by the system memory management unit
(SMMU) on select AXI4 interfaces.

3.2 HSA specifications

In this paper we leverage the HSA Foundation standards [10] and its existing
ecosystem to improve the integrability of heterogeneous SoCs. This provides a
new level of flexibility for developers of embedded systems. The specifications
consist of three main parts:



Programmable HSA Accelerators for Zynq UltraScale+ MPSoC Systems 5

– The Programmer’s Reference Manual defines the HSA intermediate language
(HSAIL) which abstracts the target ISA.

– The Runtime Programmer’s Reference Manual defines the vendor neutral
hardware communication API a language runtime is expected to target.

– The Platform System Architecture Specification defines the underlying hard-
ware model which the software toolchain is targeting.

To utilize all features the HSA ecosystem provides an application developer
does not need to use any HSA specific constructs. Instead the programming
language can freely be chosen among the available HSA compiler frontends.
When the application software is compiled the compiler is expected to separate
kernel from host code and generate all HSA runtime API calls needed. To provide
an enhanced flexibility with regards to the actual accelerator hardware a special
virtual language is used as an intermediate representation of accelerator kernel
code.

This language is called HSAIL and has a textual form which resembles
Nvidia’s PTX. Its binary representation is BRIG. For all purposes of this paper
HSAIL and BRIG are equivalent and can be converted into each other. Similar
to CUDA and OpenCL, a separation of kernels into work-groups and work-items
is also used in this execution model. A common workflow is splitted into the two
steps. First, the source code of a supported language is compiled to HSAIL.
Afterwards, either at compile time or runtime, this intermediate code is final-
ized to the accelerator ISA. Finalization is very lightweight, because most time
consuming steps like register allocation already happened in the previous com-
pile process that produces low-level BRIG. This is possible due to the minimum
hardware requirements defined in the Platform System Architecture Specifica-
tion. With this concept the dispatch latency can be reduced compared to direct
compilation from LLVM-IR/SPIR.

A reference to these kernels in target ISA is embedded in an AQL kernel
dispatch packet. These packets have a special format and compliant hardware is
expected to be able to interpret it. Besides the actual binary all associated meta
information like the grid size are also included. To submit a job to an accelerator
core such a packet just needs to be written to a user-mode queue provided by
the device. All further processing is then in the responsibility of the hardware.

3.3 LibHSA library

In order to logically and physically connect a programmable accelerator in the
PL to the ARM cores in the PS a connector is needed. In particular these
components must adhere to the protocol specified by the HSA Foundation. With
LibHSA the first implementation of such a system was presented by Reichenbach
et al. [13]. Its core component is a self-developed, lightweight, 64 bit CPU based
on the MIPS III ISA. It acts as an AQL packet processor and manages all
incoming tasks dispatched via the HSA runtime. After interpreting the AQL
packet, the packet processor issues the execution command described in Figure 1
to a suitable accelerator core. As bus protocol the widespread AXI4 standard



6 W. Bauer et al.

w
or

k 
gr

ou
p 

si
ze

 X

w
or

k 
gr

ou
p 

si
ze

 Y

w
or

k 
gr

ou
p 

si
ze

 Z

gr
id

 s
iz

e
 X

gr
id

 s
iz

e
 Y

gr
id

 s
iz

e
 Z

P
A

S
 ID

re
se

rv
ed

ke
rn

el
 P

C

1.
 k

er
ne

l a
rg

um
e

nt

2.
 k

er
ne

l a
rg

um
e

nt
2.

 k
er

ne
l a

rg
um

e
nt

N
. k

er
ne

l a
rg

um
e

nt

4 x 2 Byte 4 x 4 Byte 2 x 8 Byte

4 KByte

D
im

en
si

on
s 

&
m

em
o

ry
 b

ar
ri

er
s

Fig. 1. Execution command format of the packet processor to the accelerator cores.

has been incorporated to decrease the needed integration effort for new cores.
Additionally a fixed interface of an accelerator has been defined such that cores
can be freely interchanged.

In the following LibHSA is used to connect the accelerator core to the ARM
host in an HSA compatible way. However, in the original paper they only demon-
strated a MIPS CPU in the PL as a host. An implementation for a faster and
highly energy-efficient ARM CPU has not been presented yet. Therefore, some
adaptions had to be made in this paper.

3.4 Nyuzi Vector Processor

The accelerator core used in this paper is the open source, 32 bit Nyuzi vector
processor8. It was designed by Jeff Bush for highly parallel applications [7]. The
simultanious multi threding (SMT) capable, multi-core architecture incorporates
floating point and integer SIMD execution units. Its memory subsystem consists
of coherent, set associative L1 and L2 caches. All vector instructions support
predication allowing individual lanes of the vector to be masked to avoid branches
for diverging program flow paths. The data communication is established via two
separate bus systems. On the one hand the IO-bus is used for uncached peripheral
small data transfers without any protocol overhead besides access arbitration.
On the other hand memory transactions with the remaining system are carried
out by an AXI4-full interface with 32 bit addresses and adjustable data width.

The Nyuzi processor is parameterized and can be easily modified to contain
the desired number of cores. Moreover, the cache size, number of vector lanes,
and threads per hardware core can be also configured. To program the parallel
processor architecture of Nyuzi the project includes a complete LLVM compiler
toolchain which utilizes all of the hardware features.

8 http://nyuzi.org/



Programmable HSA Accelerators for Zynq UltraScale+ MPSoC Systems 7

Interrupts

N
yuzi - C

on
troller

Nyuzi
Core

Packet
Processor

DRAM

ARM
Cortex A53

Interconnect

Command

(AXI-Lite)

Nyuzi
Core

Nyuzi
Core

Cache
Coherent

Interconnect

Interconnect

Data

(AXI-Full)

Processing System Programmable Logic

LibHSA Compute Backend

Fig. 2. Overview of the system components. The design is splitted into three main
parts. On the right hand side there is the host subsystem with ARM, DRAM and cache-
coherent interconnect. These parts are exclusively located in the PS. The accelerator
cores can be seen on the left hand side. They are part of the programmable logic and
are interchangeable at runtime. Both parts are connected via the LibHSA library in
the middle section. It ensures the HSA conformance of the accelerator cores.

4 Environment

4.1 Hardware Structure

The general hardware setup can be seen in Figure 2. Compared to the setup
Reichenbach et al. proposed in [13] the accelerator cores are no longer limited to
fixed function accelerators. Now programmable soft-core architectures are also
possible. Moreover, with our extention their custom MIPS host processor can
be replaced by a high-performace ARM ASIC. Our design is the same for all
Zynq-based designs from low-cost UltraZed and Ultra96 boards to the high-end
Sidewinder-100. On the host side the ARM Cortex A-53 is used for the reasons
explained in Section 3.1. It dispatches all tasks which need to be accelerated to
the Nyuzi vector processor. The connection between these main components is
realized with the LibHSA library described in Section 3.3. It acts as middleware
between host and accelerator to provide a uniform HSA-based interface and
communication protocol. The central component is the packet processor which
manages all submitted kernels. Since the task dispatch always follows the HSA
specifications there is no difference between the instruction sets of different host
processors. This means on the software side any programming language with an



8 W. Bauer et al.

HSA backend is supported including upcomming, future backends. However, the
physical connection on the hardware level differs making adaptions necessary.

First, the way to send and receive interrupts differs between the Zynq ARM
core and MIPS host processor. While Reichenbach et al.’s custom MIPS has
dedicated pins for all needed in- and outgoing interrupts, this had to be changed
to GPIO for the ARM processor.

Secondly, in the Zynq system there is only one main DRAM memory region
where data is shared and this is accessible with the same addresses from PS
an PL. This means in contrast to a x86/PCIe setup the shared virtual memory
requirement is trivially satisfied in the Zynq MPSoC system.

Lastly, in an MPSoC system the DRAM is accessed via the Zynq IP core.
Here, cache coherency can be established with the integrated CCI-400. This
means no additional hardware units or software changes to the packet proces-
sor are needed to fulfill this requirement. However, not all accelerators (like
Nyuzi) support cache snooping via ACE, such that this property can be relaxed
if the specific application doesn’t need it. For that reason, to have both, high-
throughput DMA and (one-way) cache coherency, the AXI HPC ports were used
to access the DRAM from PL.

On the accelerator side LibHSA uses its own protocol since no requirements
are stated in the HSA specification. As explained in [13] accelerator cores can be
usually easily adapted with connector components provided by LibHSA. How-
ever, the Nyuzi vector processor additionally lacks abilities like system wide
memory barriers to make it suitable for shared, heterogeneous processing with
other hardware components. Therefore, more adaptions need to made which are
explained in the following Section 4.2.

4.2 Nyuzi Adapter

The Nyuzi architecture is designed to run as host processor in a computing
system, not as co-processor, offering two data bus systems and an interrupt
interface to communicate with its environment. In order to minimize the man-
agement overhead inside the compute units a dedicated hardware component,
the Nyuzi-controller, is added. This can accept AQL packets via a separate AXI-
LITE interface and can schedule work items directly on specific Nyuzi hardware
threads assigned to one core. After a thread is completed, it disables itself moni-
tored by the Nyuzi controller to schedule the next work item on the now avaiable
thread.

Work item related information, e.g. item id or group dimensions, is also
retained for each thread in the Nyuzi controller. To avoid cache invalidations
and unwanted replacements the work item meta information is transfered over
the separate IO-bus allowing simple 32 bit read and write transactions. In the
original Nyuzi design each write or read will cause a pipeline rollback because
the IO-bus was intended to perform for slow peripheral memory accesses. To
speedup IO-bus requests the execution was pipelined into four stages according
to a best case access scenario. Therefore, only bus conflicts will lead to pipeline
rollbacks.



Programmable HSA Accelerators for Zynq UltraScale+ MPSoC Systems 9

The cache system is coherent over all cores but is not capable of communicat-
ing to external components. Therefore, the L2 cache was extended with global
flushing and invalidation functionality enabling HSA memory fences. The added
flush controller waits till all L1 caches have finished their write requests and
flushes all dirty cache lines afterwards. For cache invalidation all valid bits in L2
and L1 caches are cleared after flushing the L2 cache.

4.3 HSAIL/BRIG Finalization

The executed kernel functions are compiled from any supported high level lan-
guage into the HSA itermediate representation, BRIG. Due to developers pro-
viding an LLVM-backend for Nyuzi code generation the BRIG program is first
transformed into the LLVM intermediate representation (LLVM-IR). Because
of the lacking tooling support on the side of the HSA Foundation this step is
accomplished using a self written tool supporting all instructions required for
the example kernels. For better utilization of the vector register and arithmetic
the used kernels are automatically vectorized, based on kernels’ LLVM-IR for
better reusability. The basic concept is to compute 16 work item in concurrent
X dimension with one kernel call. Therefore, within the kernel the API-call re-
turning the X-id is searched and replaced with a vector of ascending, adjacent
ids. Instructions using this now vectorized id have to expand each other operand
by ether expanding the scalar value or vectorization. Using vectorized operands
transforms the instruction result into a vectorized value, which is recursively
for all instructions. Control flow divergence evoked by vectorized branch condi-
tions lead to the reorganization of the control flow graph with the addition of
executions masks for predicated instruction execution.

5 Results

The presented results are based on the hardware boards described in section 4.1.
The Nyuzi accelerator is synthesized with four different configurations regarding
the amount of cores and cache sizes, two for the UltraZed board and two for the
Sidewinder-100 board. Due to the selection of benchmark programs no floating
point unit is configured in all variants. Table 1 shows the chosen configurations
combined with the required hardware resource using Vivado version 2017.2 as
synthesis toolchain. The complete FPGA resources are split into the static part,
the LibHSA environment, and the configurable part, the accelerator cores.

On the software side the host program is running bare metal on one ARM
core and starts various benchmark kernels using a reduced HSA-runtime. The
selected pure integer programs are:

– Vec Add : The simple addition of two vector with 215 values.
– Mat Mul : Multiplication of a 2048 x 100 and a 100 x 100 matrix.
– Gauss 3x3 : Application of a 3x3 convolution filter to a 512 x 512 image.
– Gauss 5x5 : Application of a 5x5 convolution filter to a 512 x 512 image.



10 W. Bauer et al.

Table 1. FPGA resource utilization for LibHSA environment and Nyuzi-core configu-
rations on the UltraZed and Sidewinder MPSoC platforms

Platform Component LUTs [k] FFs [k] BRAM DSPs

UltraZed LibHSA Environment 8.3 (11.8 %) 7.1 (5 %) 8 (4 %) 0 (0 %)

1-Core, Cache-Sizes:
32 KB-L1 256 KB-L2

40.9 (58 %) 24.5 (17 %) 96.5 (45%) 160 (44%)

2-Cores, Cache-Sizes:
4 KB-L1 16 KB-L2

57.4 (81 %) 33.6 (24 %) 78.5 (36%) 128 (36%)

Sidewinder-100 LibHSA Environment 8.3 (1.6 %) 7.0 (0.7 %) 8 (0.8 %) 0 (0 %)

4-Cores, Cache-Sizes:
16 KB-L1 128 KB-L2

117 (22 %) 65 (6.2 %) 171 (17 %) 256 (13 %)

8-Cores, Cores-Sizes:
32 KB-L1 256 KB-L2

229 (44 %) 124 (12 %) 345 (35 %) 512 (26 %)

Table 2. Runtime comparison of different benchmark program kernels running on
different Nyuzi configurations and the ARM Cortex A53

Vec Add Mat Mul Gauss 3x3 Gauss 5x5 Diff of Gauss

1 Nyuzi-Cores @150 MHz 10.6 ms 15.3 s 164.4 ms 336.2 ms 588.4 ms

2 Nyuzi-Cores @100 MHz 4.83 ms 129.2 s 86.0 ms 186.7 ms 377.9 ms

4 Nyuzi-Cores @150 MHz 1.87 ms 312.5 ms 15.0 ms 28.3 ms 57.8 ms

8 Nyuzi-Cores @100 MHz 1.90 ms 90.0 ms 10.4 ms 14.2 ms 38.8 ms

– Diff of Gauss: This programs calculates the absolute value of the difference
of Gauss 5x5 and Gauss 3x3.

The resulting execution times for one kernel call can be seen in Table 2.
Furthermore, it demonstrates the achieved PL-frequencies. The time measure-
ments are accomplished using the ARM’s real time clock, and are averaged over
100 runs. Attention should be paid to the difference in memory access times of
both hardware platforms with the Sidewinder-100 board performing around four
times faster than the UltraZed board. The kernel execution includes the transfer
from the ARM’s cache into the Nyuzi’s cache, the actual kernel execution, and
the flushing backing into the cache system of the ARM. Therefore, primarily
memory bound kernels, like Vec Add, hardly scale with the rising amount of
computing cores. This scaling can be distinguished clearly for the three con-
volution filter kernels. The unpropotional trend of execution time for the Mat
Mul kernel can be explained with the variation of the cache size matching the
problem size superiorly.



Programmable HSA Accelerators for Zynq UltraScale+ MPSoC Systems 11

6 Conclusion

In this paper we presented a methodology to utilize highly configurable and pro-
grammable soft-core accelerators by making MPSoC systems HSA compliant.
The high flexibility regarding the front end programing language and standard-
ized communication interface substantially could improve the accessibility these
accelerators.

We could demonstrate a HSA based heterogeneous system connecting an
ARM host CPU to the existing GPU like Nyuzi processor using software and
hardware components of LibHSA [13]. The necessary extensions to the Nyuzi
core on hardware level and the LibHSA environment were described. On the
software side a finalizer provides the conversion from intermediate BRIG code
to Nyuzi ISA.

All in all we could show that the HSA Foundation standards can reduce
the overall complexity of heterogeneous platforms, like the Zynq UltraScale+.
Moreover, the Zynq capabilities itself are well suited to implement an HSA-based
system on top of it. Furthermore, the overhead in the system introduced by the
HSA standard is only negligible. The HSA runtime API allows easy dispatching
of tasks to the accelerator cores with no knowledge of hardware specifics required.

The host code is currently running bare metal on an ARM core. In the fu-
ture an adaptation for a full Linux operating system can make it even simpler
to deploy an easily usable, heterogeneous, multi-user system on Zynq basis. In
addition, other accelerator cores could replace the currently used Nyuzi proces-
sor. Furthermore, it is conceivable to integrate LibHSA’s packet processor as a
separate ASIC in the MPSoC system and use its capabilities to bring the HSA
functionality to embedded devices without needing additional logic resources.

Acknowledgments We want to thank Xilinx and Fidus Systems for providing
the used Zynq hardware platforms necessary to conduct our research.

References

1. Al-Dujaili, A., Deragisch, F., Hagiescu, A., Wong, W.: Guppy: A gpu-like soft-core
processor. In: 2012 International Conference on Field-Programmable Technology,
FPT 2012, Seoul, Korea (South), December 10-12, 2012. pp. 57–60. IEEE (2012)

2. Altera: Implementing FPGA Design with the OpenCL Standard (Nov 2013),
https://www.altera.com/en US/pdfs/literature/wp/wp-01173-opencl.pdf

3. AMD: ROCm: Open Platform For Development, Discovery and Education around
GPU Computing (April 2016), https://gpuopen.com/compute-product/rocm/

4. Andryc, K., Merchant, M., Tessier, R.: Flexgrip: A soft gpgpu for fpgas. In: 2013
International Conference on Field-Programmable Technology (FPT). pp. 230–237
(Dec 2013)

5. Balasubramanian, R., Gangadhar, V., Guo, Z., Ho, C., Joseph, C., Menon, J.,
Drumond, M.P., Paul, R., Prasad, S., Valathol, P., Sankaralingam, K.: MIAOW -
an open source RTL implementation of a GPGPU. In: 2015 IEEE Symposium in
Low-Power and High-Speed Chips, COOL CHIPS XVIII, Yokohama, Japan, April
13-15, 2015. pp. 1–3. IEEE (2015)



12 W. Bauer et al.

6. Bush, J., Dexter, P., Miller, T.N., Carpenter, A.: Nyami: a synthesizable GPU
architectural model for general-purpose and graphics-specific workloads. In: 2015
IEEE International Symposium on Performance Analysis of Systems and Software,
ISPASS 2015, Philadelphia, PA, USA, March 29-31, 2015. pp. 173–182. IEEE Com-
puter Society (2015)

7. Bush, J., Khasawneh, M.A., Mahmoud, K.Z., Miller, T.N.: NyuziRaster: Optimiz-
ing rasterizer performance and energy in the Nyuzi open source GPU. In: Per-
formance Analysis of Systems and Software (ISPASS), 2016 IEEE International
Symposium on. pp. 204–213. IEEE (2016)

8. Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., Anderson, J.H.,
Brown, S., Czajkowski, T.: LegUp: High-level Synthesis for FPGA-based Proces-
sor/Accelerator Systems. In: Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays. pp. 33–36. FPGA ’11, ACM,
New York, NY, USA (2011)

9. Choi, J., Brown, S., Anderson, J.: From Software Threads to Parallel Hardware
in High-Level Synthesis for FPGAs. In: Field-Programmable Technology (FPT),
2013 International Conference on. pp. 270–277. IEEE (2013)

10. HSA Foundation: HSA Foundation Specification Version 1.1 (May 2016),
http://www.hsafoundation.com/standards/

11. Kadi, M.A., Huebner, M.: Integer computations with soft gpgpu on fpgas. In: 2016
International Conference on Field-Programmable Technology (FPT). pp. 28–35
(Dec 2016)

12. Mukherjee, S., Sun, Y., Blinzer, P., Ziabari, A.K., Kaeli, D.: A Comprehensive Per-
formance Analysis of HSA and OpenCL 2.0. In: Performance Analysis of Systems
and Software (ISPASS), 2016 IEEE International Symposium on. pp. 183–193.
IEEE (2016)

13. Reichenbach, M., Holzinger, P., Häublein, K., Lieske, T., Blinzer, P., Fey, D.:
LibHSA: One Step Towards Mastering the Era of Heterogeneous Hardware Acceler-
ators using FPGAs. In: Design and Architectures for Signal and Image Processing
(DASIP), 2017 Conference on. pp. 1–6. IEEE (2017)

14. Samsung: A Mobile Processor That Goes Beyond Mobile Innovation (April
2016), http://www.samsung.com/semiconductor/minisite/exynos/products/
mobileprocessor/exynos-9-series-8895/

15. Vaas, S., Reichenbach, M., Fey, D.: An application-specific instruction set processor
for power quality monitoring. In: 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). pp. 181–188 (May 2016)

16. Xilinx: The Xilinx SDAccel Development Environment (2014),
https://www.xilinx.com/publications/prod mktg/sdx/sdaccel-backgrounder.pdf

17. Xilinx: Vivado Design Suite User Guide: High-Level Synthesis (Oct 2014),
https://www.xilinx.com/support/documentation/sw manuals/xilinx2017 2/ug902-
vivado-high-level-synthesis.pdf

18. Xilinx: Xilinx Zynq UltraScale+ Device Technical Reference Manual (Dec
2017), https://www.xilinx.com/support/documentation/user guides/ug1085-
zynq-ultrascale-trm.pdf


